News & Events

Lecture of Electronics Based on Low-dimensional Systems: Memristors and Nanowires

Update time:Jun 17, 2011

  

 TOPIC:

 

Electronics Based on Low-dimensional Systems: Memristors and Nanowires

 

 

 LECTURER:

 

Prof. Wei Lu 

 

 TIME:

 

9:30am, June 20 (Monday)

 

 LOCATION:

 

 

Room A718, SINANO

 

 ABSTRACT:

 

It is well accepted now that conventional device scaling will soon hit a “brick wall” at the ~10nm scale due to several fundamental limits. In this talk I will discuss our pursuit of building future electronics using low-dimensional systems such as one-dimensional structures (termed nanowires) and two-terminal hysteretic resistive switches (termed RRAM devices or memristors). Using chemically synthesized nanowires, we have fabricated electronic devices suitable for high-performance electronics, transparent and/or flexible electronics with operation frequencies > 100 MHz, and high-performance transistor devices and quantum devices based on Ge/Si core/shell nanowires. Using a crossed wire “crossbar” structures we have studied memory and logic components based on two-terminal memristors. Two types of memristor devices will be discussed: devices with abrupt resistance change (digital-type) that possess a number of promising performance metrics such as yield, on/off ratio, switching speed, endurance and retention suitable for memory as Flash replacement or reconfigurable circuit applications; and devices with incremental resistance change (analog-type) that can be used to emulate synaptic functions to build biologically-inspired computing systems. Our recent studies to integrate the memristor arrays vertically on top of CMOS chips will also be discussed.

   

 LECTURER BIO:

 

Wei Lu is an associate professor at the Electrical Engineering and Computer Science Department at the University of Michigan - Ann Arbor. He received B.S. degree in physics from Tsinghua University, Beijing, China, in 1996, and M.A. and Ph.D. in physics from Rice University, Houston, TX in 1999 and 2003, respectively. From 2003 to 2005, he was a postdoctoral research fellow at Harvard University, Cambridge, MA. He joined the faculty of UM as an assistant professor in 2005. His research interest lies in the application and fundamental understanding of nanostructures and nanodevices, including high-density memory and logic devices based on two-terminal resistive switches (memristors), semiconductor nanowire based electronics, electrical transport in nanoscale structures, and nano-electromechanical systems. He is an Editor-in-Chief for Nanoscale, a member of the IEEE, APS, MRS, an active member of two IEEE technical committees and several program committees. He was a recipient of the NSF CAREER Award. He has published over 30 journal papers with > 2700 citations and an h-factor of 21. 

 


downloadFile