2. Printing Processing for Organic and Perovskite Solar Cells;
3. Degradation and Stability of Organic and Perovskite Solar Cells;
4. Precision Printing Manufacturing for Electronics
Employment
Jun. 2011 - Present |
Professor |
i-Lab &Printable Electronic Research Centre, SINANO, CAS |
Jan. 2007-May. 2011 |
Habilitand |
Institute of Organic Chemistry II and Advanced Materials, Ulm University, Germany |
Jun. 2006-Dec. 2006 |
Postdoctoral Research Fellow |
Institute of Organic Chemistry II and Advanced Materials, Ulm University, Germany |
Feb. 2004-May 2006 |
Alexander von Humboldt Research Fellow |
Institute of Organic Chemistry II and Advanced Materials, Ulm University, Germany (four month German study in Goethe Institute in Schw?bisch Hall, Germany) |
Jul. 2003-Jan. 2004 |
Postdoctoral Research Fellow |
Department of Chemistry, Heroit-Watt University, Edinburgh UK |
Education
Ph.D. 2003 |
Organic Photochemistry |
Technical Institute of Physics and Chemistry, CAS |
B.S. 1998 |
Chemistry |
Beijing Normal University |
(1) Xu, Z.; Han, Y.; Bai, Y.; Chen, X.; Guo, J.; Zhang, L.; Gong, C.; Luo, Q.; Zhang, T.; Ma, C.-Q. Thermoplastic elastomer enhanced interface adhesion and bending durability for flexible organic solar cells. npj Flexible Electronics 2022, 6, 56.
(2) Fang, J.; Wang, Z.; Chen, Y.; Zhang, Q.; Zhang, J.; Zhu, L.; Zhang, M.; Cui, Z.; Wei, Z.; Ade, H.; Ma, C.-Q. Revealing aggregation of non-fullerene acceptors in intermixed phase by ultraviolet-visible absorption spectroscopy. Cell Reports Physical Science 2022, 3, 100983.
(3) Liu, B.; Su, X.; Lin, Y.; Li, Z.; Yan, L.; Han, Y.; Luo, Q.; Fang, J.; Yang, S.; Tan, H.; Ma, C.-Q. Simultaneously Achieving Highly Efficient and Stable Polymer:Non-Fullerene Solar Cells Enabled By Molecular Structure Optimization and Surface Passivation. Adv. Sci. 2022, 9, 2104588.
(4) Ding, C.; Yin, L.; Zhang, L.; Huang, R.; Fan, S.; Luo, Q.; Lin, J.; Li, F.; Zhao, C.; ?sterbacka, R.; Ma, C.-Q. Revealing the Mechanism behind the Catastrophic Failure of n-i-p Type Perovskite Solar Cells under Operating Conditions and How to Suppress It. Adv. Funct. Mater. 2021, 31, 2103820.
(5) Pan, W.; Han, Y.; Wang, Z.; Gong, C.; Guo, J.; Lin, j.; Luo, Q.; Yang, S.; Ma, C.-Q. Efficiency of 14.29% and 13.08% for 1 cm2 and 4 cm2 Flexible Organic Solar Cell Enabled by Sol-Gel ZnO and ZnO Nanoparticles Bilayer Electron Transporting Layers. J. Mater. Chem. A 2021, 9, 16889-16897.
(6) Han, Y.; Dong, H.; Pan, W.; Liu, B.; Chen, X.; Huang, R.; Li, Z.; Li, F.; Luo, Q.; Zhang, J.; Wei, Z.; Ma, C.-Q. An Efficiency of 16.46% and a T80 Lifetime of Over 4000 h for the PM6:Y6 Inverted Organic Solar Cells Enabled by Surface Acid Treatment of the Zinc Oxide Electron Transporting Layer. ACS Appl. Mater. Interfaces 2021, 13, 17869–17881.
(7) Ding, C.; Huang, R.; Ahlang, C.; Lin, j.; Zhang, L.; Zhang, D.; Luo, Q.; Li, F.; ?sterbacka, R.; Ma, C.-Q. Synergetic Effects of Electrochemical Oxidation of Spiro-OMeTAD and Li+ Ions Migration in Improving the Performance of n-i-p Type Perovskite Solar Cells. J. Mater. Chem. A 2021, 9, 7575-7585.
(8) Wang, Z.; Han, Y.; Yan, L.; Gong, C.; Kang, J.; Zhang, H.; Sun, X.; Zhang, L.; Lin, J.; Luo, Q.; Ma, C.-Q. High Power Conversion Efficiency of 13.61% for 1 cm2 Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure-Printed Silver Nanowire Electrodes. Adv. Funct. Mater. 2021, 30, 2007276.
(9) Gu, H.; Yan, L.; Li, Z.; Zhang, J.; Luo, Q.; Yang, Y.; Liu, X.; Wei, Z.; Ma, C.-Q. Simultaneous Performance and Stability Improvement of Ternary Polymer Solar Cells Enabled by Modulating the Molecular Packing of Acceptors. Solar RRL 2020, 4, 2000374.
(10) Li, Z.; Shan, J.; Yan, L.; Gu, H.; Lin, Y.; Tan, H.; Ma, C.-Q. The Role of Hydrogen-Bond Between Piperazine and Fullerene Molecule in Stabilizing Polymer:Fullerene Solar Cell Performance. ACS Appl. Mater. Interfaces 2020, 12, 15472-15481.